

Construction Retrofit in the Context of the LEZ Berlin

7th VERT FORUM

Filter and deNOx-technologies

Efficient for both, diesel and gasoline direct injection vehicles

Volker Schlickum

Senatsverwaltung für Stadtentwicklung und Umwelt

Berlin

What to expect from this presentation?

- Contribution to reduction of superfine soot particle emission in low emission zone
- New engines of construction machines are regarding exhaust emission characteristics worse than 10 years old engines of HD onroad vehicles
- Inquiries of citizens regarding measures also at construction machines (equal treatment)
- The target is to determine what is possible and where is the borderline

The backpressure and temperature with CRT

Temperature and exhaust-gas back-pressure ahead of CRT

(Berlin double-decker, February 2000)

Filter and deNOx-technologies, Efficient for both, diesel and gasoline direct injection vehicles, March 18, 2016

3

Cumulative probability of bus exhaust-gas temperatures

(CRT filter regenerates above curve, but accumulates particles below curve)

CRT costs

	Material cost	Wage cost		
CRT retrofitting	5,500 to 7,000 EUR	150 EUR		
CRT regeneration		200 EUR		

CRT failure	0.5% p.a.

1400 Busses for municipal public transport

2004 72% with particulate filter		100% in only 8 years with particulate filte				
	Referenz 2004	2005	2006	2007	2008	2009
EURO 0	28%	22%	10%			
EURO 0 with CRT- Particulate filter	11%	7%	7%	4%		
EURO 1 with CRT- Particulate filter	12%	12%	12%	12%	3%	
EURO 2 with CRT- Particulate filter	35%	35%	35%	35%	35%	26%
EURO 3 with CRT- Particulate filter	12%	21,9%	22%	22%	22%	22%
EURO 4 with CRT- Particulate filter	0,1%	0,1%	12%	12%	12%	12%
EURO 5 with Particulate filter / EEV	2%	2%	2%	15%	28%	40%

Filter and deNOx-technologies, Efficient for both, diesel and gasoline direct injection vehicles, March 18, 2016

6

Air quality monitoring network

Number of days above 50 µg/m³ PM10 in 2005

7

Berlin LEZ @ emission criteria

<u>Area:</u>

about 88 km² (Berlin total area: 892 km²)

Inhabitants:

about 1 Million (Berlin total: 3,4 Mio) more than 40 LEZ planned/in force in Germany, another
30 LEZ in the EU, but with different emission criteria

Stage 1: since 1.1.2008

- Diesel vehicles: at least Euro 2 or Euro 1 & retrofit
- Gasoline vehicles: at least Euro 1
- 7% of vehicle fleet affected

Stage 2: since 1.1.2010

- Diesel: particle emission Euro 4:
- cars: Euro 3 + particle filter or better
- goods vehicles: also retrofit of Euro 1-3 towards Euro 4_{Particle}
- In 10% of the vehicle fleet affected

Reduction which has been achieved in road traffic

Filter and deNOx-technologies, Efficient for both, diesel and gasoline direct injection vehicles, March 18, 2016

9

Berlin LEZ – real impact analysis Total carbon concentration

traffic-adjusted trend of the local traffic increment of total carbon concentrations in main roads in and outside of the LEZ

PM10 immission by traffic: Trend for 2015

Exceedance:

- above 30 µg/m³:
- 52,1 km
- 43.600 individuals

■ above 32 µg/m³:

- nearly 16 km
- above 14.000 individuals

source analysis @ where does it come from & how much ?

Example: phenomenology of the PM-pollution around Berlin

Additional transport measures

- SCRT retrofit for public buses
- particulate filter for construction machines
- and as an option for the future,
 - SCRT retrofit for goods vehicles
 - Lez with a new light-blue sticker

Retrofit – Efficiency SCR + DPF® Systems

Retrofit is more cost-effective

PM standards for NRMM in comparison to HD vehicles

PM standards for new registration

DPF trial on Berlin's construction machines

Target-setting:

- Technology trial with 40 construction machines
- Effect of the filter systems on total costs
- Filter durability over 2 years operation
- Which circumstances can limit the reliability of operation?
- Recommendation for further retrofit application

Filter and deNOx-technologies, Efficient for both, diesel and gasoline direct injection vehicles, March 18, 2016

Adaption of existing filter technologies

Project realization

- Catalogue preparation of construction machines for Berlin's retrofit trial.
- Assessment of available construction machines for their DPF ability
- Allocation of construction machines for DPF application among the filter manufacturers according to first-come principle
- Free of charge installation of DPFs into the construction machines.
- Measurements in fresh conditions (new DPF), after one year and two years operation.
- Agreement for cost sharing among filter manufacturers and operating companies after successful end of trial.

Measurement program

4 exhaust gas emission measurements carried out by TÜV Hessen:

- in original condition (w/o DPF): 45 construction machines
- ♦ with new installed DPF → acceptance control
- ✤ after one year operation
- after two years operation (end of project)
- further parameters to be measured:
 - Opacity in front of and behind filter as a degree for precipitation (standard AU technology). Other measurement principles will be applied in future as well.
 - 🔖 Exhaust gas backpressure
 - **Engine speed**
 - 🔖 Exhaust gas temperature
- additionally: Data-Logger of some manufacturers during the entire project time:
 - Schaust gas backpressure
 - Operation hours
 - Sector 2 Sec

Participating DPF manufacturers

DPF-Filtermedien

Clean(axx Rußfilterreinigung Industriereinigung Handel

Silicon Carbide Internals

Cordierite Internals

Sintered Metal Internals

Regeneration principles installed, based on filter manufacturers' choice

- with additive (FBC)
- with additive + temporarily add-on electrical heating by alternator
- \succ passive \rightarrow catalytically coated filter (CRT principle)
- passive with catalytically coated filter + temporarily electrical regeneration "over night"
- external regeneration in oven

Two passive, catalytically coated filters (CRT principle)

HJS with additive + temporarily add-on electrical heating by alternator

Opazität nach Baujahr

Final results

- Not every vehicle can be refitted, because there may be no space for the refit, or the conversion is not cost-effective
- Malfunction only occurred when the DPF was assembled inadequately or the regeneration technology had not been adjusted.
- After the installation of the DPF the soot values had dropped near the detection limit in all tests.
- Use low-ash oil and the cleaning intervals will be at 1,000-2,500h. A professional cleaning including transport costs ca. 400 €
- IN ORDER TO REFIT SUCCESSFULLY YOU NEED A COMPETENT AND RELIABLE PARTNER, (DPF-Producer + a company that assembles filters) who sometimes says "NO" to cheap, passive regenerative filters

Every machine could then emit as few particles as these retrofitted vehicles

Thank you!

volker.schlickum@SenStadtUm.Berlin.de

030/9025-2390

www.berlin.de/baumaschinen-partikelfilter